Diagnosis of brucellosis in livestock and wildlife.
نویسندگان
چکیده
AIM To describe and discuss the merits of various direct and indirect methods applied in vitro (mainly on blood or milk) or in vivo (allergic test) for the diagnosis of brucellosis in animals. METHODS The recent literature on brucellosis diagnostic tests was reviewed. These diagnostic tests are applied with different goals, such as national screening, confirmatory diagnosis, certification, and international trade. The validation of such diagnostic tests is still an issue, particularly in wildlife. The choice of the testing strategy depends on the prevailing brucellosis epidemiological situation and the goal of testing. RESULTS Measuring the kinetics of antibody production after Brucella spp. infection is essential for analyzing serological results correctly and may help to predict abortion. Indirect ELISAs help to discriminate 1) between false positive serological reactions and true brucellosis and 2) between vaccination and infection. Biotyping of Brucella spp. provides valuable epidemiological information that allows tracing an infection back to the sources in instances where several biotypes of a given Brucella species are circulating. Polymerase chain reaction and new molecular methods are likely to be used as routine typing and fingerprinting methods in the coming years. CONCLUSION The diagnosis of brucellosis in livestock and wildlife is complex and serological results need to be carefully analyzed. The B. abortus S19 and B. melitensis Rev. 1 vaccines are the cornerstones of control programs in cattle and small ruminants, respectively. There is no vaccine available for pigs or for wildlife. In the absence of a human brucellosis vaccine, prevention of human brucellosis depends on the control of the disease in animals.
منابع مشابه
Brucellosis in terrestrial wildlife.
The epidemiological link between brucellosis in wildlife and brucellosis in livestock and people is widely recognised. When studying brucellosis in wildlife, three questions arise: (i) Is this the result of a spillover from livestock or a sustainable infection in one or more host species of wildlife? (ii) Does wildlife brucellosis represent a reservoir of Brucella strains for livestock? (iii) I...
متن کاملBrucellosis Transmission between Wildlife and Livestock in the Greater Yellowstone Ecosystem: Inferences from DNA Genotyping.
The wildlife of the Greater Yellowstone Ecosystem carries brucellosis, which was first introduced to the area by cattle in the 19th century. Brucellosis transmission between wildlife and livestock has been difficult to study due to challenges in culturing the causative agent, Brucella abortus . We examined B. abortus transmission between American bison ( Bison bison ), Rocky Mountain elk ( Cerv...
متن کاملEvaluation of Survival Analysis Models for Predicting Factors Infuencing the Time of Brucellosis Diagnosis
Background:Brucellosis or Malta fever is one of the most common zoonotic diseases in the world. In addition to causing human suffering and dire economic impact on animals, due to the high prevalence of Brucellosis in the western regions of Isfahan province, this study aimed to analyze effective factors in the time of Brucellosis diagnosis using parametric and semi-parametric mo...
متن کاملBrucellosis at the Wildlife/Livestock/Human Interface
There are a number of bacterial, viral, and parasitic diseases present at the Wildlife/ livestock/human interface. Brucellosis is a zoonotic disease of importance and highly prevalent in sub-Saharan Africa. The important Brucella species at the wildlife/live‐ stock/human interface are Brucella arbortus, Brucella suis, and Brucella melitensis. These species have been isolated from humans, livest...
متن کاملA serological survey of brucellosis in wild ungulate species from five game parks in Zimbabwe.
A retrospective serosurvey was carried out between 2009 and 2012 to detect antibodies to Brucella spp. in free-ranging African wildlife ungulates from five selected game parks in Zimbabwe. Samples were drawn from wildlife-livestock interface and non-interface areas in Zimbabwe. A total of 270 serum samples from four different species, namely African buffalo (Syncerus caffer) (n =106), impala (A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Croatian medical journal
دوره 51 4 شماره
صفحات -
تاریخ انتشار 2010